Long-term clinical success in the management of compromised intertooth spaces utilizing small-diameter implants

By Dr Paul S. Pettruggaro, USA

Management of edentulous sites in the oral cavity with dental implants has been well documented in dental literature during the last 15 plus years.[1] Patients seeking tooth replacement for partial or totally edentulous situations have been able to enjoy natural appearing and functioning prostheses that are fixed, stable and, in some cases, so natural it’s difficult to ascertain a dental implant restoration for a tooth restoration. Using dental implants to replace the natural tooth system in the esthetic zone has also seen an increase in restorative treatment plans and, with the advent and perfection of immediate restoration protocols initially reported in the literature,[2] achieving natural soft-tissue esthetics around dental implants can be predictable and successful. However, certain clinical situations can complicate or negate the procedure all together.

One of these complications is insufficient intertooth spacing between natural teeth and, most commonly, congenitally missing lateral incisors following orthodontic treatment.[3] Often as a solution to this, the dentist chooses a removable partial denture or some type of resin-bonded bridge, both of which may not be appealing to younger individuals. In extreme cases, the dentist may elect to proceed with a fixed bridge, which would cause extensive destruction to the natural teeth serving as abutments and, for a young individual, this could be devastating to these teeth during a 40-50 year period, if not sooner.[4]

To properly form an ovate pontic type emergence profile in the soft tissue, which is required for a fixed bridge to have a natural clinical appearance, consideration must be given to the intertooth edentulous space.[5] This is also very important when choosing dental implants for natural tooth replacement. Wallace, Much and Salama, et al.[6][7] stated that an implant site requires, for a normal two-piece implant, the implant should be placed at least 5.5 mm from the adjacent teeth. As a result, using a 3.5 mm diameter implant, the minimum inter-tooth space to support interproximal bone and natural soft-tissue papillary contours should be 6.5 mm, and with a 4.0 mm diameter implant, 6.0 mm for the edentulous space. Often, the intertooth space in these types of cases is smaller than 6.0 mm.

Taking these parameters into account, small-diameter (or, mini) implants (3.0 mm is the smallest from most dental implant manufacturers) should not be used in cases with less than 6.0 mm of intertooth space, to prevent potential tooth root damage, crestal bone loss and unesthetic appearing gingival tissues and papillae. Small-diameter implants were developed more than 20 years ago and, initially, the recommended use was to support temporary removable prostheses during the healing phase for advanced bone-grafting procedures and/or conventional implant placements.[8] Their use was later expanded into immediate conversion of full dentures into implant-supported dentures, support for partially edentulous cases and for anchorage of single tooth implant restorations in compromised intertooth spaces.[9]

Implants are available from 1.8 mm diameter to 2.8 mm diameter and offer a fixed permanent tooth replacement option for patients that otherwise would not be able to have implants placed and restored. Their ease of use and atraumatic placement utilizing a flapless approach, with only one coring procedure, as well as simplistic abutment transfer and provisional construction, make the use of these implants in the aforementioned sites a must for the dental implant practice.

The following case report will demonstrate the use of the Dentatus ANEW (Denatus USA, Ltd, New York, NY) implant for the management of the compromised, congenitally missing lateral space in a 17-year-old teenage girl and a 10-year clinical follow up.

Case report
A 17-year-old, non-smoking female presented for tooth replacement in the congenitally missing maxillary left lateral incisor site (Fig. 1). The patient had recently completed orthodontic therapy, and the orthodontist and general practitioner had agreed this was the final obtainable result in regard to the remaining intertooth space between the maxillary left central incisor and maxillary left canine (Fig. 2). The resultant intertooth space was less than 5 mm, and conventional two-stage implants with abutment options were ruled out. The patient and her parents ruled out conventional tooth replacement options and chose the minimally invasive procedure: a small-diameter implant, 1.8 mm in diameter, which would allow for natural papillary contours to be developed.

After administration of an appropriate local anesthetic, an ovate pontic contour was created utilizing a football-shaped diamond in the attached, keratinized tissue of the edentulous site (Fig. 3). This scalloped-type tissue contour helps in the creation of the natural appearing papillary contours.

Fig. 1. Pre-treatment clinical view

Fig. 2. Pre-operative periapical radiograph

Fig. 3. Ovate pontic type defect created

Fig. 4. Dentatus ANEW implant seated minimally invasive protocol

The answers and critiques published herein have been checked carefully and represent authoritative opinions about the questions concerned.

The small-diameter implant chosen, a 1.8 mm x 14 mm Dentatus ANEW implant was then placed after a min
The management of compromised intertooth spaces presents a challenge for the contemporary dental implant team. These spaces have limits on how they are available for use, and observation phase prior to construction of a lab-processed provisional restoration. One year later, the patient underwent final restoration fabrication at the adjacent sites. Compend Contin Educ Dent 2002, 23:595-599.

References

An ion shell provisional crown was then holstered and remolded to the abutment coping with flowable composite. The margins of the provisional were cor- rected and provisional contoured out of the mouth. The restoration was polished and seated with the screw set from the palatal. The immediate postoperative clinical view is seen in Fig. 5. The immediate postoperative peri- apical view is seen in Fig. 6.

The patient then went through the three-month healing and observation phase prior to construction of a lab-processed provisional restoration (Fig. 7). One year later, the patient underwent final restoration fabrication at the adjacent sites. A 10-year postoperative CT scan of the implant is shown in Fig. 9. Please note the beautiful soft-tissue esthetic result obtained and excellent maintain- ance of the crestal and lateral contours.

Conclusion
The management of compromised intertooth spaces presents a challenge for the contemporary dental implant team. These spaces have limits on how they are available for use, and observation phase prior to construction of a lab-processed provisional restoration. One year later, the patient underwent final restoration fabrication at the adjacent sites. Compend Contin Educ Dent 2002, 23:595-599.

Fig. 5. Immediate postoperative Clinical view.
Fig. 6. Immediate postoperative radiograph.
Fig. 7. Lab processed, long-term provisional restoration.
Fig. 8. 10-year postoperative clinical view.
Fig. 9. 10-year postoperative CT axial view.

Fig. 10. 10-year postoperative clinical view.

Dr. Shashikal Jay, USA
Diplomate AID
Clinical Assistant Professor
School of Dentistry
Moscow State University
Dr. Ninette Banday, UAE
Co-Director AAID MaxiCourse Abu Dhabi, UAE
Diplomate AAID
Fellow, American Academy of Implant Dentistry
Dr. Anni Vora, USA
Diplomate of the American Board of Periodontology
Professor, JHU Hospital and the Veteran Affairs (J.A.) hospital.
Dr. Jaime Lozado, USA
Director of the Graduate Program in Implant Dentistry,
University of Pennsylvania, USA
Dr. William Locante, USA
Diplomate of AID
Faculty of Dentistry, Beirut Arab University
Dr. Burney Dumont, USA
Fellow, American Academy of Implant Dentistry
Dr. Jason Kim, USA
Fellowship in AID
Dr. Cesar Banday, USA
Fellowship in AID
Dr. Bart Slimann, USA
Diplomate, American Board of Oral Implantology
Oral & Maxillofacial Surgeon
Dr. Rached Naoa, USA
Diplomate American Board of Periodontology
Dr. Robert Horowitz, USA
Diplomate American Board of Periodontology
Clinical Assistant Professor New York University, USA
Dr. Stuart Orlin-Jones, UK
Faucilitator Minister, The Poetry Association Member, Atlanta Implant Study Club
Dr. Robert Miller, USA
Board Certified by the American Board of Oral Implantology
Fellow, Harvard-Penn, American Academy of implant Dentistry
Dr. Philip Tewes, France
Fellow in Oral and Maxillofacial Implantology and the Endo System
Dr. Natasha Wong, Canada
Diplomate, American Board of Oral Implantology Fellow, American Academy of Implant Dentistry
Dr. Irvin Ranchhadas, India
Implant Fellow (UMDNJ, USA), Diplomate, American Board of Oral Implantology
Dr. Ziad Abid, Lebanon
Diplomate American Board of Oral Implantology Fellow, AID
Professor, Head of Implantology Division, Faculty of Dentistry, Aoukar University

The full list of references is available from the publishers.